30 Days into using the Victron MultiPlus 12/1600/70-16 inverter and a Liontron 12V 80Ah with our Swift Sprite Caravan

The Caravan we got last year did not come with an inverter, so getting coffee in the morning or running a microwave was only possible when our main generator was running. And the installed battery for 12V support had a rather small capacity. This was clear to us from the beginning, as we eventually wanted to connect the Caravan to our EVE 280Ah cells.

But since we got our Starlink internet and our router did not seem to run easily on DC power, we needed -in addition to the temporary morning AC coffee spike – a more permanent AC solution.

So, I grabbed an existing Liontron 12V 80Ah battery that was sitting on the shelf along with a Victron Energy MultiPlus 12/1600/70-16 charger/inverter and connected the inverter AC Output to the CEE16-1 AC input of the caravan and the inverter AC Input to one of the phases of my JCB G20QS generator (of course, all via Neutrik powerCON TRUE1 TOP connectors and H07RN-F3G2.5 cable).

For the connection between the inverter and the battery I used a 35mm2 cable and Klauke DIN 46235 compression cable lugs on one end and insulated ferrules on the other end. In between, I added Anderson SB 175 connectors with 1383 lugs for quick disconnects and crimped as shown here. For the fuse I used a Schneider Electric 125A DC MCB, as I do not expect higher loads in this setup.

Of course, first I updated the firmware of the inverter and configured it work with the battery:

  1. Setting the AC input to 16A
  2. Setting the battery type to LiFePO4
  3. Setting the charge current to 70A (which is over the recommend amount of 50A, but see below for details)

As I did not want to connect a Cerbo GX to the system, I just used the VictronConnect App. Maybe I add a VE.Bus Smart dongle later on, or I connect some GX nevertheless. Who knows … Until now, it needs a wired connection to the inverter to see its status.

After powering on the generator, I confirmed everything was roughly working as expected. During the first run, the SOC was shown as 100% though the BMS of the battery internal saw it differently. In addition, the reported Amps and temperature were seen differently, as well. So, even that I set the inverter over the recommended maximum of 50A for the battery, the actual charge power was never much higher than the actual maximum).

This is what the inverter saw (100% SOC, 14.05V DC cell voltage, charging at 64A):

MultiPlus charging the Liontron battery via the generator

And this is, what the Liontron BMS reported (76% SOC, 13.8V DC cell voltage, charging at 55.5A):

The SOC as seen by the Liontron battery BMS

In the end, the BMS stopped charging when it thought its batteries were full. And the inverter did not complain. However, I noticed that the cells were really not in balance (with a delta of 200mV between the lowest and highest voltage).

Discharging was ok, as well. However, I soon realised that the 100A discharge current could not be achived in my setup. The inverter tried to draw power and the BMS cut off with a “Discharge over-current” (OCD). SO, still no coffee via our Nespresso machine (and no microwave either, for that matter).

So, what is the take away of all this?

  1. It works and now, I can run the Internet all day.
  2. All in all, it is a relatively simple and quick setup.
  3. The Liontron battery does somehow not live up to its specs (and yes, I know the battery could be a size bigger for what I want to achieve; but I did not want to buy an additional battery for this temporary solution).
  4. It is way cheaper and more flexible than to buy this “off the shelf”.
  5. Maybe, I add a Victron SmartShunt to get a more accurate SOC reporting (as I do not see any other way to integrate the BMS with the inverter).
  6. Charging of the battery is quite fast when running the generator.
Unknown's avatar

Author: Ronald Rink

I am a senior auditor, consultant and architect at d-fens for business processes and information systems.

Leave a comment